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Param Priya Singh1,2¤b & Hervé Isambert1,2*
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1 Information-theoretic approach to network reconstruction

1.1 Signature of causality versus indirect contributions to information in graphs

We first discuss the rationale of the information-theoretic method to learn ancestral graphs with the
assumption that an infinite amount of data is available with a distribution P (X) faithful to an underlying
graph model G, before discussing in the next section the necessary corrections needed, in practice, to
account for the finite size of the dataset.

We will thus assume that the measured distribution P (X) is stable or faithful to the underlying graph
model G, implying that each structural independency underm-separation criterion [1] (i.e. each excluded
edge XY in G) corresponds to a vanishing conditional mutual information as,

(X ⊥m Y |{Ai})G ⇐⇒ (X ⊥⊥ Y |{Ai})P
⇐⇒ I(X;Y |{Ai}) = 0 (S1)

Theorem 1 [Signature of causality vs indirect contributions in G, Affeldt & Isambert 2015 [2]] Given
some data with a distribution P (X) faithful to a graph G,

• i) [Signature of causality] If ∃X,Y, Z ∈ V and {Ai} ⊆ V \{X,Y, Z} s.t. I(X;Y |{Ai}) = 0
and I(X;Y ;Z|{Ai}) < 0, then G is necessarily causal, i.e. it has at least one v-structure.

• ii) [Indirect contribution] ∀X,Y, Z ∈ V and ∀{Ai} ⊆ V \{X,Y,Z} s.t. I(X;Y ;Z|{Ai})> 0, then
I(X;Y |{Ai}) = I(X;Y ;Z|{Ai})+I(X;Y |Z, {Ai}) > 0 and I(X;Y ;Z|{Ai})>0 can be seen
as the positive contribution to the remaining conditional mutual information I(X;Y |{Ai}) > 0
(and equivalently to I(X;Z|{Ai})>0 and I(Y ;Z|{Ai})>0 by symmetry of I(X;Y ;Z|{Ai})).

Sketch of proof [The full proof is given in [2]: Theorem 4 and Corollary 2] i) is proven via its contrapos-
itive showing that non-causal graphs with structural independence I(X;Y |{Ai}) = 0 have necessarily
vanishing conditional three-point information terms, I(X;Y ;Z|{Ai}) = 0, ∀Z ∈ V \({X,Y }∪{Ai}).
Moreover, since I(X;Y ;Z|{Ai}) 6 0 whenever I(X;Y |{Ai})=0 for any graph in general (from Eq. 5
in main text with An=Z), it means that I(X;Y ;Z|{Ai})<0 indeed implies a necessary causal graph.
ii) is simply Eq. 5 in main text with An=Z as well. �

Theorem 1 i), which characterizes the signature of causality in observational data, will be used to
orient v-structures, once Theorem 1 ii) has been used to learn structural independences by collecting
one-by-one the significant contributors {Ai} and partitioning iteratively mutual information terms into
positive contributions from indirect paths as,

I(X;Y ) = I(X;Y ;A1) + I(X;Y |A1)

= I(X;Y ;A1) + I(X;Y ;A2|A1) + I(X;Y |A1, A2)

= I(X;Y ;A1) + I(X;Y ;A2|A1) + . . .

. . .+ I(X;Y ;An|{Ai}n−1) + I(X;Y |{Ai}n) (S2)
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with I(X;Y ;Ak|{Ai}k−1) > 0 for all k. Hence, conditional independence, I(X;Y |{Ai}n) = 0, is
eventually retrieved (if it holds) after subtracting successive significant positive three-point conditional
information from the original two-point conditional information [2, 3] as,

I(X;Y |{Ai}n) = I(X;Y )− I(X;Y ;A1)− . . .− I(X;Y ;An|{Ai}n−1) (S3)

The robustness of the approach hinges on picking the most likely contributors first to avoid a later accu-
mulation of incorrect contributors in an attempt to compensate for early errors. Choosing the most likely
contributors requires, however, to take into account the finite size of the dataset as detailed in the next
section.

1.2 Finite size effect and most likely contributor score

This section, adapted from [2], addresses finite size corrections to multivariate information and introduce
a heuristic score to collect the most likely contributors {Ai}n in Eq. S3.

Given N independent samples from some available data D, the Maximum Likelihood, LD|G , that
they might have been generated by the graphical model G, is given by [4],

LD|G =
e−NH(p,q)

ZD,G
=
eN

∑
x p(x) log q(x)

ZD,G
(S4)

where H(p, q) = −
∑

x p(x) log q(x) is the cross entropy between the empirical probability distribu-
tion p(x) of the data D and the theoretical probability distribution q(x) of the model G, and H(p) =
−
∑

x p(x) log p(x) is the entropy of the data and ZD,G a data- and model-dependent factor ensuring
proper normalization condition. The structural constraints of the model G are included in the factoriza-
tion form of the theoretical probability distribution, q(x).

In particular, the conditional mutual information, I(X;Y |{Ai}), for structural independence, Eq. S3,
cannot be exactly zero, given a finite dataset of N independent samples, and has to be compared to
a finite threshold, I(X;Y |{Ai}) < kX;Y |{Ai}/N , where kX;Y |{Ai} > 0 is related to the likelihood
normalization ratio between graphs including or excluding edge XY with separation set {Ai} [2],

LD|G\XY |{Ai}

LD|G
=

e−NI(X;Y |{Ai})

ZD,G\XY |{Ai}
/ZD,G

= e−NI(X;Y |{Ai})+kX;Y |{Ai} (S5)

kX;Y |{Ai} = log
(
ZD,G/ZD,G\XY |{Ai}

)
(S6)

where kX;Y |{Ai} tends to limit the complexity of the models by favoring fewer edges. A common com-
plexity criterion in model selection is the Bayesian Information Criterion (BIC) or Minimum Description
Length (MDL) criterion [5,6], which is simply related to the maximum likelihood normalization constant
reached in the asymptotic limit of a large dataset N →∞ (Laplace approximation). However, this limit
distribution is only reached for very large datasets in practice. Alternatively, the normalization of the
maximum likelihood can also be done over all possible datasets including the same number of samples
to yield a (universal) Normalized Maximum Likelihood (NML) criterion [7, 8] and its decomposable
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version [9, 10]. All application results presented in this paper are obtained with the XY -symmetric de-
composable NML criterion introduced in [3], which was shown to yield significantly better results than
BIC/MDL criterion on benchmark networks.

Thus, finite size effects in graphical model comparison can be included by redefining two-point and
three-point conditional multivariate information as,

I ′(X;Y |{Ai}) = I(X;Y |{Ai})−
kX;Y |{Ai}

N
(S7)

I ′(X;Y ;Z|{Ai}) = I(X;Y ;Z|{Ai})−
kX;Y ;Z|{Ai}

N
(S8)

where conditional three-point information including finite size corrections, I ′(X;Y ;Z|{Ai}), and their
associated complexity terms, kX;Y ;Z|{Ai}, are defined with respect to two-point information including
finite size corrections and their associated complexity terms, using the same Eq. 5 in main text with
An=Z,

I ′(X;Y ;Z|{Ai}) = I ′(X;Y |{Ai})− I ′(X;Y |{Ai}, Z) (S9)

kX;Y ;Z|{Ai} = kX;Y |{Ai} − kX;Y |{Ai},Z (S10)

Hence, Eq. S3 including finite size corrections becomes,

I ′(X;Y |{Ai}n) = I ′(X;Y )− I ′(X;Y ;A1)− . . .− I ′(X;Y ;An|{Ai}n−1) (S11)

where the conditional two-point and tree-point multivariate information are related to the following max-
imum likelihood ratios, using Eq. S6,

LD|G\XY |{Ai}

LD|G
= e−NI′(X;Y |{Ai}) (S12)

LD|G\XY |{Ai},Z

LD|G\XY |{Ai}

= eNI′(X;Y ;Z|{Ai}) (S13)

with conditional independence including finite size effect corresponding to I ′(X;Y |{Ai})60.

Hence, learning, iteratively, the most likely edge to be removedXY and its corresponding separation
set {Ai} will imply to simultaneously minimize two-point information (Eq. S12) while maximizing
three-point information (Eq. S13). In fact, the sign and magnitude of conditional three-point information
included finite size corrections, I ′(X;Y ;Z|{Ai}), determine the probability that Z should be included
in or excluded from the sepset candidate {Ai} as:

• If I ′(X;Y ;Z|{Ai}) > 0, Z is more likely to be included in {Ai} with probability,

Pnv(X;Y ;Z|{Ai}) =
LD|G\XY |{Ai},Z

LD|G\XY |{Ai}
+LD|G\XY |{Ai},Z

=
1

1 + e−NI′(X;Y ;Z|{Ai})
(S14)
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• If I ′(X;Y ;Z|{Ai}) < 0, Z is more likely to be excluded from {Ai}, suggesting obligatory causal
relationships in the form of a v-structure between X,Y, Z with probability,

Pv(X;Y ;Z|{Ai}) = 1− Pnv(X;Y ;Z|{Ai}) =
1

1 + eNI′(X;Y ;Z|{Ai})
(S15)

But, in the case I ′(X;Y ;Z|{Ai}) > 0, Eq. S13 can also be interpreted as quantifying the likelihood
increase that the edge XY should be removed from the model by extending the candidate sepset from
{Ai} to {Ai} + Z, i.e. LD|G\XY |{Ai},Z

= LD|G\XY |{Ai}
× exp(NI ′(X;Y ;Z|{Ai})) > LD|G\XY |{Ai}

,
as exp(NI ′(X;Y ;Z|{Ai})) > 1. Yet, as the three-point information, I ′(X;Y ;Z|{Ai}), is actually
symmetric with respect to the variables, X , Y and Z, the factor exp(NI ′(X;Y ;Z|{Ai})) provides in
fact the same likelihood increase for the removal of the three edges XY , XZ and ZY , conditioned on
the same initial set of nodes {Ai}, namely,

LD|G\XY |{Ai},Z

LD|G\XY |{Ai}

=
LD|G\XZ|{Ai},y

LD|G\XZ|{Ai}

=
LD|G\ZY |{Ai},x

LD|G\ZY |{Ai}

= eNI′(X;Y ;Z|{Ai}) (S16)

However, despite this symmetry of three-point information, I ′(X;Y ;Z|{Ai}), the likelihoods that the
edges XY , XZ and ZY should be removed are not the same, as they depend on different 2-point
information, I ′(X;Y |{Ai}), I ′(X;Z|{Ai}) and I ′(Z;Y |{Ai}), Eq. S12. In particular, the likelihood
ratio between the removals of the alternative edges XY and XZ is given by,

LD|G\XY |{Ai},Z

LD|G\XZ|{Ai},Y

=
LD|G\XY |{Ai}

LD|G\XZ|{Ai}

=
e−NI′(X;Y |{Ai})

e−NI′(X;Z|{Ai})
(S17)

and similarly between edges XY and ZY .

Hence, for XY to be the most likely edge to be removed conditioned on the sepset {Ai} + Z, not
only Z should contribute through I ′(X;Y ;Z|{Ai})>0 with probability Pnv(X;Y ;Z|{Ai}) (Eq. S14),
but XY must also correspond to the ‘weakest’ edge of XY , XZ and ZY conditioned on {Ai}, as
given by the lowest conditioned 2-point information, Eq. S17. Note that removing the edge XY with
the lowest conditional 2-point information is consistent, as expected, with the Data Processing Inequal-
ity, I(X;Y |{Ai}) 6 min(I(X;Z|{Ai}), I(Z;Y |{Ai})), in the limit of large datasets. However, quite
frequently, XZ or ZY might also have low conditional 2-point information, so that the edge removal
associated with the symmetric contribution I(X;Y ;Z|{Ai}) will only be consistent with the Data Pro-
cessing Inequality (DPI) with probability,

Pdpi(XY ;Z|{Ai}) =
LD|G\XY |{Ai}

LD|G\XY |{Ai}
+ LD|G\XZ|{Ai}

+ LD|G\ZY |{Ai}

=
1

1 + e−NI′(X;Z|{Ai})

e−NI′(X;Y |{Ai})
+ e−NI′(Z;Y |{Ai})

e−NI′(X;Y |{Ai})

(S18)

In practice, taking into account this DPI-consistency probability Pdpi(XY ;Z|{Ai}), as detailed be-
low, significantly improves the results obtained by relying solely on the ‘non-v-structure’ probability
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Pnv(X;Y ;Z|{Ai}). Conversely, the DPI-consistency probability Pdpi(XY ;Z|{Ai}) is not sufficient on
its own to uncover causal relationships between variables, which require to compute three-point infor-
mation I(X;Y ;Z|{Ai}) and the probability Pnv(X;Y ;Z|{Ai}) (see Proposition 1 and Proposition 2,
below).

To optimize the likelihood that the edgeXY can be accounted for by the additional contribution of Z
conditioned on previously selected {Ai}, we propose to combine the maximum of three-point informa-
tion (Eq. S14) and the minimum of 2-point information (Eq. S18) by defining the score S lb(Z;XY |{Ai})
as the lower bound of Pnv(X;Y ;Z|{Ai}) and Pdpi(XY ;Z|{Ai}), since both conditions need to be ful-
filled to warrant that edge XY is likely to be absent from the model G,

S lb(Z;XY |{Ai}) = min
[
Pnv(X;Y ;Z|{Ai}), Pdpi(XY ;Z|{Ai})

]
(S19)

Hence, the pair of nodes XY with the most likely contribution from a third node Z and likely to be
absent from the model can be ordered according to their rank R(XY ;Z|{Ai}) defined as,

R(XY ;Z|{Ai}) = max
Z

(
S lb(Z;XY |{Ai})

)
(S20)

Then, Z can be iteratively added to the set of contributing nodes (i.e. {Ai} ← {Ai}+Z) of the top edge
XY = argmaxXYR(XY ;Z|{Ai}) to progressively recover the most significant indirect contributions
to all pairwise mutual information in a causal graph.

2 Algorithmic pipeline of the information-theoretic approach miic

The implementation of the information-theoretical approach miic proceeds in three steps corresponding
to the following algorithmic pipeline:

• Algorithm 1: Learning skeleton taking into account latent variables

• Algorithm 2: Confidence estimation and sign of retained edges

• Algorithm 3: Probabilistic orientation and propagation of remaining edges

miic is implemented in an R-package and freely available under a General Public License (Supplemen-
tary Software).

2.1 Algorithm 1: Learning skeleton taking into account latent variables

Using the heuristic score, Eq. S20, to implement the successive subtractions of three-point conditional
information terms in Eq. S11, yields Algorithm 1
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Algorithm 1: Skeleton reconstruction in the presence of latent variables

In: observational data of finite size N , complexity criterion NML (or MDL)
Out: skeleton of ancestral graph G

Initiation
Start with complete undirected graph
forall the edges XY do

if I ′(X;Y )<0 then
XY edge is non-essential and removed
separation set of XY : SepXY = ∅

else

find the most contributing node Z and compute its rank, R(XY ;Z|∅)
(Z can be restricted to neighbors of X and Y if latent variables are excluded)

end
end

Iteration
while ∃ XY edge with R(XY ;Z|{Ai}) > 1/2 do

for edge XY with highest rank R(XY ;Z|{Ai}) do

expand contributing set {Ai} ← {Ai}+ Z

if I ′(X;Y |{Ai})<0 then
XY edge is non-essential and removed
separation set of XY : SepXY = {Ai}

else

find the next most contributing node Z and compute rank, R(XY;Z|{Ai})
(Z can be restricted to neighbors of X and Y if latent variables are excluded)

end

update highest rank edge

end
end
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2.2 Algorithm 2: Confidence estimation and sign of retained edges

Once a first skeleton has been obtained using Algorithm 1, the confidence on each retained edge can
be estimated through an edge specific confidence ratio CXY based on the probability PXY to remove a
directed edge X → Y from the graph G, as defined by Eq. S12,

PXY =
LD|G\XY |{Ai}

LD|G
= e−NI′(X;Y |{Ai}) (S21)

CXY =
PXY

〈P rand
XY 〉

(S22)

where 〈P rand
XY 〉 is the average of the probability to remove the XY edge after randomly permutating the

dataset for each observable. Hence, the lower CXY , the higher the confidence on the XY edge.

In practice, 〈P rand
XY 〉 is not actually evaluated looking for contributors {Ai} as done for PXY (since

there should be no contributors nor edges after randomization of the data) but just computing 〈P rand
XY 〉=

〈e−NI′(X rand;Y )〉, where the X rand variable is assigned randomly permutated values of X across the
different samples (randomizing Y or both variables is statistically equivalent). As a result, CXY is
slightly overestimated (as ignoring contributors actually underestimates 〈P rand

XY 〉) but can be computed
efficiently by averaging over hundreds of permutated values at each vertex. The filtering of retained
edges is implemented in Algorithm 2.

Algorithm 2: Filtering retained edges according to an edge specific confidence ratio CXY

In: Skeleton obtained from Algorithm 1, confidence level Cs<1, nb permutations rmax

Out: Revised skeleton, after filtering out lower confidence edges with CXY > Cs

forall the vertices Xi do
forall the random permutations r < rmax do

Assign Xrand
i values through random permutation of Xi values

forall the Xj adjacent of Xi with j > i do
Compute I ′r(X

rand
i ;Xj)← max

(
0, I ′(Xrand

i ;Xj)
)

end
end
forall the Xj adjacent of Xi with j > i do

Compute 〈P rand
XiXj
〉=〈e−NI′r(X

rand
i ;Xj)〉rmax

Compute CXiXj = PXiXj/〈P rand
XiXj
〉 and remove edge XiXj , if CXiXj > Cs

end
end

In addition, the sign of each retained edge, X Y , is defined by the sign of the partial correlation
coefficient, ρXY ·A, between X and Y conditioned on its derived contributors A = {Ai} in Algorithm 1,
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with positive coefficients corresponding to partial correlations and negative coefficients corresponding to
partial anti-correlations.

The partial correlation coefficient can be computed in O(n3) using matrix inversion of the partial
covariance matrix (on {X,Y } ∪A variables) or by dynamic programming using the recursive formula,
for any A◦ ∈ A,

ρXY ·A =
ρXY ·A\{A◦} − ρXA◦·A\{A◦}ρA◦Y ·A\{A◦}√

1− ρ2XA◦·A\{A◦}

√
1− ρ2A◦Y ·A\{A◦}

(S23)

Negative partial correlations are represented as blue edges in the predicted network reconstructions,
Figures 2-4 and their figure supplements.

2.3 Algorithm 3: Probabilistic orientation and propagation of remaining edges

Given the skeleton obtained from Algorithm 1, possibly filtered through Algorithm 2, based on edge
specific confidence ratio, Eqs. S14 and S15 can then be used to establish the following Proposition 1 and
Proposition 2 for probabilistic orientation and propagation rules of unshielded triples.

To this end, let us first introduce three different endpoint marks associated to edges in mixed graphs:
they are the tail (−), the head (>) and the unspecified (◦) endpoint marks. In addition, we will use the
asterisk symbol (∗) as a wild card denoting any of the three marks and define orientation probabilities at
either one or two (underlined) endmarks using Propositions 1 and 2 below.

Proposition 1 [Robust orientation of v-structures from finite dataset including latent variables]
Assuming that the underlying graphical model is an ancestral graph G on V ,
if ∃X,Y, Z, {Ai} ∈ V s.t. I ′(X;Y ;Z|{Ai}) < 0 then,

i. if X,Y, Z form an unshielded triple, X ∗−◦ Z ◦−∗ Y with X 6 Y , then it should be oriented as
X ∗→ Z ←∗Y , with endmark probabilities at Z,

P ◦X∗→Z = P ◦Y ∗→Z =
1 + eNI′(X;Y ;Z|{Ai})

1 + 3eNI′(X;Y ;Z|{Ai})
(S24)

ii. similarly, if X,Y, Z form an unshielded triple, with one already known converging arrow into
the middle node, X ∗→ Z ◦−∗ Y , with endmark probability at Z, PX∗→Z > P ◦X∗→Z , then the
second edge should be oriented to form a v-structure, X ∗→ Z ←∗Y , with endmark probability
at Z,

PY ∗→Z = PX∗→Z

(
1

1 + eNI′(X;Y ;Z|{Ai})
− 1

2

)
+

1

2
(S25)

Proof. The implications (i.) and (ii.) rely on Eq. S15 to estimate the probability that the two edges form
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a v-structure. We start proving (ii.) using the probability decomposition formula:

PY ∗→Z = PX∗→Z
PX∗→Z←∗Y

PX∗→Z←∗Y + PX∗→Z→Y

+ (1− PX∗→Z)
PX←Z←∗Y

PX←Z←∗Y + PX←Z→Y

= PX∗→Z

(
1

1 + eNI′(X;Y ;Z|{Ai})
− 1

2

)
+

1

2
(S26)

which also leads to (i.) if one assumes PX∗→Z = PY ∗→Z by symmetry in absence of prior information
on these orientations. �

Following the rationale of constraint-based approaches, it is then possible to ‘propagate’ further the
orientations downstream of v-structures, using Eq. S14 for positive (conditional) three-point information.
For simplicity and consistency, we only implement the propagation of orientation based on likelihood
ratios, which can be quantified for finite datasets as proposed in the following Proposition 2. Hence, we
do not apply the complete propagation rules for ancestral graphs [11], which inforce in particular acyclic
constraints, that are necessary to have a complete reconstruction of the Markov equivalent class of the
underlying ancestral graph model.

Proposition 2 [Robust propagation of orientations from finite dataset including latent variables]
Assuming that the underlying graphical model is an ancestral graph G on V ,
∀X,Y, Z, {Ai} ∈ V s.t. I ′(X;Y ;Z|{Ai}) > 0, if X,Y, Z form an unshielded triple with one already
known converging orientation, X ∗→ Z ◦−∗ Y , with endmark probability at Z, PX∗→Z > 1/2, then
this orientation should be ‘propagated’ to the second edge as X ∗→ Z→ Y , with endmark probability
at Z and Y ,

PZ→Y = PX∗→Z

(
1

1 + e−NI′(X;Y ;Z|{Ai})
− 1

2

)
+

1

2
(S27)

Proof. This results is shown using the probability decomposition formula,

PZ→Y = PX∗→Z
PX∗→Z→Y

PX∗→Z←∗Y + PX∗→Z→Y

+ (1− PX∗→Z)
PX←Z→Y

PX←Z←∗Y + PX←Z→Y

= PX∗→Z

(
1

1 + e−NI′(X;Y ;Z|{Ai})
− 1

2

)
+

1

2
(S28)

�

Proposition 1 and Proposition 2 lead to the following Algorithm 3 for the orientation of unshielded
triples of the graph skeleton obtained from Algorithm 1 with possibly additional edge filtering through
Algorithm 2.
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Algorithm 3: Probabilistic Orientation / Propagation of edges including latent variables

In: Graph skeleton from Algorithm 1, possibly filtered through Algorithm 2,
and corresponding conditional three-point information I ′(X;Y ;Z|{Ai}).

Out: Partially oriented causal graph G with endmark orientation probabilities.

Probabilistic Orientation / Propagation Step including latent variables

sort list of unshielded triples, Lc = {〈X,Z, Y 〉X 6 Y }, in decreasing order of their endmark
orientation/propagation probabilities initialized at 1/2 and computed from:

- (i.) Proposition 1, if I ′(X;Y ;Z|{Ai})<0, or
- (ii.) Proposition 2, if I ′(X;Y ;Z|{Ai})>0

repeat

Take 〈X,Z, Y 〉X 6 Y ∈ Lc with highest endmark orient./propa. probability > 1/2.

if I ′(X;Y ;Z|{Ai}) < 0 then
Orient/propagate edge direction(s) to form a v-structure X ∗→Z←∗Y with endmark
probabilities PX∗→Z and PY ∗→Z given by Proposition 1.

else
Propagate second edge direction to form a non-v-structure X ∗→Z→Y assigning
endmark probabilities PZ→Y from Proposition 2.

end

Apply new orientation(s) and sort remaining list of unshielded triples
Lc ← Lc\〈X,Z, Y 〉X 6 Y after updating propagation probabilities.

until no additional endmark orient./propa. probability >1/2;

3 Algorithmic implementation and tools

We provide the miic software in two formats, an R-package to be used in the R environment, and
executables to be used directly in a terminal.

3.1 miic R-package

miic R-package contains the full implementation of the method designed for the R environment.

To install miic, enter R and install the R package as,
install.packages("< path >/miic 0.1.tar.gz", repos=NULL, source=T)
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The package also provides functions to plot the predicted networks within the R environment and to
export the results in graphml format for cytoscape graphical display. See the package documentation for
additional details on miic R-package.

The R-package contains the three application datasets presented in the main text (Figures 2-4). An
example of network reconstruction is detailed below:

library(miic)
# load hematopoiesis data frame
data(hematoData)

# execute MIIC (reconstruct graph)
miic.res = miic(inputData = hematoData, latent = TRUE, confidenceShuffle = 100,
confidenceRatio = 0.001)

# plot graph
miic.plot(miic.res)

# write graph to graphml format. Note that to correctly visualize the network we created the miic style for Cy-
toscape (http://www.cytoscape.org/).
miic.write.cytoscape(g = miic.res, file = "..")

3.2 miic and FCI executables

We provide also miic and FCI executables, which were used for all benchmarks included in the paper.

Directories and scripts

The main folder contains the scripts and source code for the reconstruction of networks from observa-
tional data.

The directories are organized as follows:
/

common
miic.R
gmPlot.R
gmSummary.R

sharedLib
data

some data input/output...
miic

all miic scripts and executables
fci

all fci scripts
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Package requirements

To launch the miic.R script, R should be installed, along with some packages available in the CRAN
repository.

Rpackages getopt, plotrix, igraph, ppcor, bnlearn, pcalg

Calling the inference methods with miic

The inference methods can be called through the miic.R script.

Overview

main ∼/common/miic.R

lib ∼/common/lib/...

Arguments (mandatory: *)

-i * file path of the input dataset1

-o * directory path for the output of the inference method2

-m inference method (miic, fci)
default: miic

-d steps to perform3 (‘1,2,3,4’ or ‘1,2’ or ‘1,3’ etc...)
default: ‘1,2,3,4’

-p parameters for the inference method (see the following subsections). The value expected here
is of type character: ‘param1:value1,param2:value2 etc...’

-t file path to the true edges; used during the summary step4

-l file path to the layout of each vertex; used during the plot step5

-c if given, edges will be filtered according to their confidence ratio. It needs two parameters,
described in the part “Option ‘-c’ for miic”.

-s if given, this file provides an ordering of each variable categories for the calculation of the
sign of the edges. The signs are calculated using Spearman’s partial correlation coefficient.
The ordering file is automatically generated if not provided by the user and can be edited
to properly reorder the variable categories. See an example of stateOrder file in the data
directory.

1The input dataset should be a tab separated table, with column names but no row names. Missing values should be indicated
with NA. Each column corresponds to a categorized variable and each row to one sample.

2To prevent from overwriting existing results, if the output directory already exists, the skeleton inference step returns a
message and stops.

3(1) skeleton, (2) probabilistic orientation, (3) summary, (4) plot
4The true edges file has two space-separated columns. Each line corresponds to one true edge. The orientation is col1 →

col2.
5The layout file has three tab separated columns, the first column being optional. Each line corresponds to the (x, y)

coordinates of each vertex. The first column can contain the label of the vertex as indicated in the colnames of the input dataset
table. The order in which the coordinates are given also corresponds to the order of the colnames of the input dataset table.
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A full example to run in ‘common’ directory:

Rscript miic.R -i ../data/alarm1000samples.txt -o ../data/alarmNetwork -m miic -c csh:100,ccr:0.01
-p cpx:nml,efn:1000,lat:yes,prg:yes -l ../data/alarmLayout.txt -s ../data/alarmStateOrder.tsv

When calling the available inference methods with miic.R, the ‘p’ option can be used to indicate the
chosen parameters. The value expected for this option is of type character:
‘param1:value1,param2:value2 etc...’. The possible parami and valuei for each method are detailed
in the following subsections.

Option ‘-p’ for miic

cpx formula used to compute the complexity term [‘mdl’6 or ‘nml’7]
default: nml (Ex.: -p ‘...,cpx:mdl,...’)

lat should the network be reconstructed under the hypothesis that some variables might not be observed?
[‘yes’ or ‘no’]
default: no (Ex.: -p ...,lat:yes,...)

prg should the network be oriented using the propagation rule? [‘yes’ or ‘no’]
default: yes (Ex.: -p ...,prg:yes,...)

efn number of uncorrelated samples
default: number of rows of the input dataset (Ex.: -p ...,efn:1000,...)

A ‘-p’ example: -p cpx:mdl,efn:1000

Option ‘-p’ for FCI

aph α significance level for the statistical independence tests8

default: 0.01 (Ex.: -p ...,aph:0.001,...)

cit type of statistical independence test [‘gaussCItest’, ‘dsepTest’, ‘disCItest’, ‘binCItest’]
default: gaussCItest (Ex.: -p ...,cit:disCItest,...)

skm choose the original PC or the order-independant version [‘stable’, ‘original’, ‘stable.fast’]
default: stable (Ex.: -p ...,skm:original,...)

typ which type of fci variant should be used9 [‘normal’, ‘rapid’, ‘adaptive’, ‘anytime’ ]
default: normal (Ex.: -p ...,typ:rapid,...)

con set the state of the conservative rule [‘TRUE’, ‘FALSE’]
default: FALSE (Ex.: -p ...,con:TRUE,...)

6Minimum Description Length or Bayesian Information Criterion (BIC) [5, 6]
7Normalized Maximum Likelihood criterion [3, 7–10]
8refer to the documentation of the R package ‘pcalg’ for details
9RFCI corresponds to ‘rapid’
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maj set the state of the majority rule [‘TRUE’, ‘FALSE’]
default: FALSE (Ex.: -p ...,maj:TRUE,...)

A full ‘-p’ example: -p aph:0.000001,cit:disCItest,skm:stable,typ:normal,con:FALSE,maj:FALSE

Option ‘-c’ for miic

csh number of random shuffling of the input dataset, in order to get the random mutual information
between miic inferred edges (Ex.: -c ...,csh:100,...)

ccr confidence ratio used as a threshold for filtering the edges. (Ex.: -c ...,ccr:0.01,...)

A full ‘-c’ example: -c csh:100,ccr:0.01

Viewing inferred networks

The inferred networks can be viewed either in pdf format (automatically generated with igraph http:
//igraph.org/) or with interactive graphml format for better display using cytoscape (http://
www.cytoscape.org/). The files are located in the following directories:

• Unfiltered network: ‘edgesList.miic.summary.plot confidence.pdf’ (only with the -m miic option),
‘edgesList.miic.summary.plot pCor.pdf’ and graphml ‘[output name].graphml’ files are located in
the output directory set by the -o entry in the command line

• Filtered networks (using -c option with miic): pdf and graphml files are in the subdirectory ‘shuf-
fle [cshValue]/filtered network [ccrValue]’, which can be found in the output directory set by the
-o entry in the command line. The output folder name in this case is ‘filtered network [ccrValue]’.

We recommend the utilization of Cytoscape tool, version 3.1.0 or later is available for Windows, Linux
and OsX. Visualizing miic networks with Cytoscape requires to go through the following steps:

1. Import the network: File⇒Import⇒Network⇒File, and select the graphml file in the created
output directory

2. Import the style: File⇒Import⇒Styles, and select the miic style.xml file present at the root of the
provided source directory

3. Select the loaded style: under the Style panel present in Control Panel select the miic style

Detailed information on output files

Additional information on output files can be found in the user manual.
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